翻訳と辞書
Words near each other
・ Kaplan Law School
・ Kaplan Medical Center
・ Kaplan SelfTest
・ Kaplan Street
・ Kaplan Teachers Union
・ Kaplan Thaler Group
・ Kaplan turbine
・ Kaplan University
・ Kaplan's Thestor
・ Kaplan, Beypazarı
・ Kaplan, Inc.
・ Kaplan, Louisiana
・ Kaplancık, Vezirköprü
・ Kaplaneios School
・ Kaplanovo
Kaplansky density theorem
・ Kaplansky's conjecture
・ Kaplansky's theorem on quadratic forms
・ Kaplan–Meier estimator
・ Kaplan–Sheinwold
・ Kaplan–Yorke conjecture
・ Kaplan–Yorke map
・ Kaplava parish
・ Kapler
・ Kapletha
・ Kaplica
・ Kaplica, Pomeranian Voivodeship
・ Kaplica, Świętokrzyskie Voivodeship
・ Kaplice
・ Kaplický


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kaplansky density theorem : ウィキペディア英語版
Kaplansky density theorem
In the theory of von Neumann algebras, the Kaplansky density theorem, due to Irving Kaplansky, is a fundamental approximation theorem. The importance and ubiquity of this technical tool led Gert Pedersen to comment in one of his books〔Pg. 25; Pedersen, G. K., ''C
*-algebras and their automorphism groups'', London Mathematical Society Monographs, ISBN 978-0125494502.〕 that,
:''The density theorem is Kaplansky's great gift to mankind. It can be used every day, and twice on Sundays.''
==Formal statement==
Let ''K''- denote the strong-operator closure of a set ''K'' in ''B(H)'', the set of bounded operators on the Hilbert space ''H'', and let (''K'')1 denote the intersection of ''K'' with the unit ball of ''B(H)''.
:Kaplansky density theorem.〔Theorem 5.3.5; Richard Kadison, ''Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory'', American Mathematical Society. ISBN 978-0821808191.〕 If A is a self-adjoint algebra of operators in B(H), then each element a in the unit ball of the strong-operator closure of A is in the strong-operator closure of the unit ball of A. In other words, (A)_1^ = (A^)_1. If h is a self-adjoint operator in (A^)_1, then h is in the strong-operator closure of the set of self-adjoint operators in (A)_1.
The Kaplansky density theorem can be used to formulate some approximations with respect to the strong operator topology.
1) If ''h'' is a positive operator in (''A''-)1, then ''h'' is in the strong-operator closure of the set of self-adjoint operators in (''A''+)1, where ''A''+ denotes the set of positive operators in ''A''.
2) If ''A'' is a C
*-algebra
acting on the Hilbert space ''H'' and ''u'' is a unitary operator in A-, then ''u'' is in the strong-operator closure of the set of unitary operators in ''A''.
In the density theorem and 1) above, the results also hold if one considers a ball of radius ''r'' > ''0'', instead of the unit ball.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kaplansky density theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.